Original Articles

Structural and ultrastructural organization of the parietal cortex and dorsal hippocampus in transgenic 5xFAD mice administered sodium valproate, a histone deacetylase inhibitor

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 24 December 2025
52
Views
26
Downloads
2
HTML

Authors

Light and electron microscopy revealed significant neuropathological alterations in both parietal cortical and hippocampal tissues of 7-month-old 5xFAD (familial Alzheimer’s disease) transgenic mice, a well-established model of human Alzheimer’s disease (AD), compared to age-matched wild-type controls. Key pathological findings included neuronal degeneration, extensive β- amyloid (Aβ) plaque deposition in the neuropil, and astroglial activation with elevated glial fibrillary acidic protein (GFAP) expression in affected brain regions. Consistent with AD-like pathology, 5xFAD mice exhibited cognitive deficits resembling human dementia, which correlated with reduced activity of neprilysin (NEP), the principal amyloid-degrading enzyme. To counteract the reduction in NEP level, we performed daily intraperitoneal administration of the histone deacetylase (HDAC) inhibitor sodium valproate (VA; 200 mg/kg body weight) for one month. VA treatment of adult mice normalized NEP expression levels, restored olfactory and mental functions, and significantly reduced amyloidosis progression. Notably, while VA treatment ameliorated major pathological features, residual ultrastructural abnormalities persisted in cortical and hippocampal tissues. These findings highlight the critical role of amyloid clearance mechanisms in early AD pathogenesis. It can be concluded that the therapeutic potential of NEP upregulation might be crucial as an early therapy strategy applied prior to extensive Aβ plaque formation and irreversible neurodegeneration.

Downloads

Download data is not yet available.

Citations

1. Revi M. Alzheimer’s Disease. Therapeutic Approaches. Adv Exp Med Biol 2020;1195:105-16. DOI: https://doi.org/10.1007/978-3-030-32633-3_15
2. Nalivaeva NN, Zhuravin IA, Turner AJ. Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 2020;192:111363. DOI: https://doi.org/10.1016/j.mad.2020.111363
3. Thakral S, Yadav A, Singh V, et al. Alzheimer’s disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023;88:101960. DOI: https://doi.org/10.1016/j.arr.2023.101960
4. Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet 2011;377:1019-31. DOI: https://doi.org/10.1016/S0140-6736(10)61349-9
5. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021;397:157-90. DOI: https://doi.org/10.1016/S0140-6736(20)32205-4
6. Al-Ghraiybah NF, Wang J, Alkhalifa AE, et al. Glial Cell-Mediated Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci 2022;23:10572. DOI: https://doi.org/10.3390/ijms231810572
7. Arendt T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the Dr. Jekyll and Mr. Hyde concept of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 2003;71:83-248. DOI: https://doi.org/10.1016/j.pneurobio.2003.09.007
8. Sos KE, Mayer MI, Takács VT, et al. Amyloid β induces interneuron-specific changes in the hippocampus of APPNL-F mice. PLoS One 2020;15:e0233700. DOI: https://doi.org/10.1371/journal.pone.0233700
9. Tumanova NL, Vasiliev DS, Dubrovskaya NM, Nalivaeva NN. Morphofunctional changes in the brain nervous tissue of 5xFAD transgenic mice. Cell Tissue Biol 2022;16:380-91. DOI: https://doi.org/10.1134/S1990519X22040095
10. Tumanova NL, Vasilev DS, Dubrovskaya NM, Nalivaeva NN. Neurodegenerative changes in the structural and ultrastructural organization in the pyriform cortex of 5xFAD transgenic mice. J Evol Biochem Physiol 2022;58:1225-39. DOI: https://doi.org/10.1134/S0022093022040251
11. Vasilev DS, Dubrovskaya NM, Tumanova NL, Nalivaeva NN. Analysis of expression of the amyloid-degrading enzyme neprilysin in brain structures of 5xFAD transgenic mice. J Evol Biochem Physiol 2022;58:193-203. DOI: https://doi.org/10.1134/S0022093022010173
12. Baranello RJ, Bharani KL, Padmaraju V, et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr Alzheimer Res 2015;12:32-46. DOI: https://doi.org/10.2174/1567205012666141218140953
13. Carson JA, Turner AJ. Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem 2002;81:1-8. DOI: https://doi.org/10.1046/j.1471-4159.2002.00855.x
14. Turner AJ. Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem Soc Trans 2003;31:723-7. DOI: https://doi.org/10.1042/bst0310723
15. Vasilev DS, Dubrovskaya NM, Tumanova NL, et al. Valproate administration to adult 5xFAD mice upregulates expression of neprilysin and improves olfaction and memory. J Mol Neurosci 2024;74:110. DOI: https://doi.org/10.1007/s12031-024-02287-3
16. Klein C, Mathis C, Leva G, et al. Gamma-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a mouse model of Alzheimer’s disease. Neurobiol Aging 2015;36:832-44. DOI: https://doi.org/10.1016/j.neurobiolaging.2014.10.003
17. Wang Z, Zhang XJ, Li T, et al. Valproic acid reduces neuritic plaque formation and improves learning deficits in APP(Swe)/PS1(A246E) transgenic mice via preventing the prenatal hypoxia-induced down-regulation of neprilysin. CNS Neurosci Ther 2014;20:209-17. DOI: https://doi.org/10.1111/cns.12186
18. Nalivaeva NN, Belyaev ND, Turner AJ. Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 2009;30:509-14. DOI: https://doi.org/10.1016/j.tips.2009.07.002
19. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd Edition, Academic Press, San Diego; 2001.
20. Malkin SL, Amakhin DV, Veniaminova EA, et al. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience 2016;327:146-55. DOI: https://doi.org/10.1016/j.neuroscience.2016.04.024
21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402-8. DOI: https://doi.org/10.1006/meth.2001.1262
22. Kosel F, Hamilton JS, Harrison SL, et al. Reduced social investigation and increased injurious behavior in transgenic 5xFAD mice. J Neurosci Res 2021;99:209-22. DOI: https://doi.org/10.1002/jnr.24578
23. Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour hallmarks in Alzheimer’s disease 5xFAD mouse model. Int J Mol Sci 2024;25:6766. DOI: https://doi.org/10.3390/ijms25126766
24. Richard B C, Kurdakova A, Baches S, et al. Gene Dosage Dependent Aggravation of the Neurological Phenotype in the 5XFAD Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2015;45:1223-36. DOI: https://doi.org/10.3233/JAD-143120
25. Kosik KS. The neuritic dystrophy of Alzheimer’s disease: degeneration or regeneration? In: Hefti F, Brachet P, Will B, Christen Y (eds.) Growth factors in Alzheimer’s disease. Berlin, Heidelberg: Springer; 1991, pp. 234-40. DOI: https://doi.org/10.1007/978-3-642-46722-6_20
26. Li Q, Weiland A, Chen X, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol 2018;9:581. DOI: https://doi.org/10.3389/fneur.2018.00581
27. Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 2018;66:637-53. DOI: https://doi.org/10.1002/glia.23270
28. Sugiki T, Utsunomiya-Tate N. Site-specific aspartic acid isomerization regulates self-assembly and neurotoxicity of amyloid-β. Biochem Biophys Res Commun 2013;441:493-8. DOI: https://doi.org/10.1016/j.bbrc.2013.10.084
29. Kulikova AA, Makarov AA, Kozin SA. The role of zinc ions and structural polymorphism of β-amyloid in the initiation of Alzheimer’s disease. Mol Biol 2015;49:249-63. DOI: https://doi.org/10.1134/S0026893315020065
30. Wang C, Zong S, Cui X, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front Immunol 2023;14:1117172. DOI: https://doi.org/10.3389/fimmu.2023.1117172

How to Cite



Structural and ultrastructural organization of the parietal cortex and dorsal hippocampus in transgenic 5xFAD mice administered sodium valproate, a histone deacetylase inhibitor. (2025). Veterinary Science Development, 9(1). https://doi.org/10.4081/vsd.2025.10639